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Inequalities for a generalized finite Hilbert
transform of convex functions

Silvestru Sever Dragomir

Abstract. In this paper we obtain some new inequalities for a gen-
eralized finite Hilbert transform of convex functions. Applications for
particular instances of finite Hilbert transforms are given as well.

1. Introduction

Finite Hilbert transform on the open interval (a, b) is defined by

(Tf) (a, b; t) :=
1

π
PV

∫ b

a

f (τ)

τ − t
d τ := lim

ε→0+

[∫ t−ε

a
+

∫ b

t+ε

]
f (τ)

π (τ − t)
d τ,

for t ∈ (a, b) and for various classes of functions f for which the above
Cauchy Principal Value integral exists, see [14, Section 3.2] or [18, Lemma
II.1.1].

Suppose that I is an interval of real numbers with interior I̊ and f : I → R
is a convex function on I. Then f is continuous on I̊ and has finite left and
right derivatives at each point of I̊. Moreover, if x, y ∈ I̊ and x < y, then
f ′− (x) ≤ f ′+ (x) ≤ f ′− (y) ≤ f ′+ (y) which shows that both f ′− and f ′+ are
nondecreasing function on I̊. It is also known that a convex function must
be differentiable except for at most countably many points.

For a convex function f : I → R, the subdifferential of f denoted by ∂f
is the set of all functions ϕ : I → [−∞,∞] such that ϕ

(
I̊
)
⊂ R and

f (x) ≥ f (a) + (x− a)ϕ (a) for any x, a ∈ I.

It is also well known that if f is convex on I, then ∂f is nonempty, f ′−,
f ′+ ∈ ∂f and if ϕ ∈ ∂f , then

f ′− (x) ≤ ϕ (x) ≤ f ′+ (x) for any x ∈ I̊.

2020 Mathematics Subject Classification. Primary: 26D15; Secondary: 26D10.
Key words and phrases. Finite Hilbert Transform, Convex functions, Integral inequal-

ities.
Full paper. Received 30 November 2020, accepted 19 July 2021, available online 22

September 2021.

c©2021 Mathematica Moravica
81



82 Inequalities for a generalized finite Hilbert transform

In particular, ϕ is a nondecreasing function. If f is differentiable and convex
on I̊, then ∂f = {f ′} .

The following result holds for the finite Hilbert transform of convex func-
tions.

Theorem 1 (Dragomir et al., 2001 [2]). Let f : (a, b) → R be a convex
function on (a, b). Then we have

1

π

[
f (t) ln

(
b− t
t− a

)
+ f (t)− f (a) + f ′+ (t) (b− t)

]
≤ (Tf) (a, b; t)

≤ 1

π

[
f (t) ln

(
b− t
t− a

)
+ f (b)− f (t) + f ′− (t) (t− a)

]
,

for all t ∈ (a, b).
In particular, we have

1

π

[
f

(
a+ b

2

)
− f (a) + f ′+

(
a+ b

2

)(
b− a

2

)]
≤ (Tf)

(
a, b;

a+ b

2

)
≤ 1

π

[
f (b)− f

(
a+ b

2

)
+ f ′−

(
a+ b

2

)(
b− a

2

)]
.

For several recent papers devoted to inequalities for the finite Hilbert
transform (Tf), see [3]-[13], [15]-[17] and [19,20].

We can naturally generalize the concept of Hilbert transform as follows.
For a continuous strictly increasing function g : [a, b]→ [g (a) , g (b)] that

is differentiable on (a, b) we define the following generalization of the finite
Hilbert transform of a function f : (a, b)→ C by

(Tgf) (a, b; t) :=
1

π
PV

∫ b

a

f (τ) g′ (τ)

g (τ)− g (t)
d τ

(1)

:= lim
ε→0+

[∫ t−ε

a
+

∫ b

t+ε

]
f (τ) g′ (τ)

π [g (τ)− g (t)]
d τ

:=
1

π
lim
ε→0+

[∫ t−ε

a

f (τ) g′ (τ)

g (τ)− g (t)
d τ +

∫ b

t+ε

f (τ) g′ (τ)

g (τ)− g (t)
d τ

]
,

for t ∈ (a, b) , provided the above PV exists.
For [a, b] ⊂ (0,∞) and g (t) = ln t, t ∈ [a, b] we have the logarithmic finite

Hilbert transform defined by

(2) (Tlnf) (a, b; t) :=
1

π
lim
ε→0+

[∫ t−ε

a

f (τ)

τ ln
(
τ
t

) d τ +

∫ b

t+ε

f (τ)

τ ln
(
τ
t

) d τ

]
,
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where t ∈ (a, b) .
For g (t) = exp (αt) , t ∈ [a, b] ⊂ R with α > 0 we have exponential finite

Hilbert transform defined by

(
Texp(α)f

)
(a, b; t)

(3)

:=
1

π
lim
ε→0+

[∫ t−ε

a

f (τ) exp (ατ)

exp (ατ)− exp (αt)
d τ +

∫ b

t+ε

f (τ) exp (ατ)

exp (ατ)− exp (αt)
d τ

]
,

where t ∈ (a, b) .
For [a, b] ⊂ (0,∞) and g (t) = tr, t ∈ [a, b] , r > 0, we have the positive

r-power finite Hilbert transform defined by

(4) (Trf) (a, b; t) :=
r

π
lim
ε→0+

[∫ t−ε

a

f (τ) τ r−1

τ r − tr
d τ +

∫ b

t+ε

f (τ) τ r−1

τ r − tr
d τ

]
,

where t ∈ (a, b) .
Similarly, we can consider the function g (t) = −t−p, t ∈ [a, b] ⊂ (0,∞) ,

p > 0, and then we have the negative p-power finite Hilbert transform

(T−pf) (a, b; t) :=
p

π
lim
ε→0+

[∫ t−ε

a

f (τ) τ−p−1

t−p − τ−p
d τ +

∫ b

t+ε

f (τ) τ−p−1

t−p − τ−p
d τ

](5)

=
ptp

π
lim
ε→0+

[∫ t−ε

a

f (τ)

τ (τp − tp)
d τ +

∫ b

t+ε

f (τ)

τ (τp − tp)
d τ

]
,

where t ∈ (a, b) .

For [a, b] ⊂
[
− π

2ρ ,
π
2ρ

]
and g (t) = sin (ρt) , t ∈ [a, b] where ρ > 0, we have

the ρ-sine finite Hilbert transform(
Tsin(ρ)f

)
(a, b; t)(6)

:=
ρ

π
lim
ε→0+

[∫ t−ε

a

f (τ) cos (ρτ)

sin (ρτ)− sin (ρt)
d τ +

∫ b

t+ε

f (τ) cos (ρτ)

sin (ρτ)− sin (ρt)
d τ

]
,

where t ∈ (a, b) .
For g (t) = sinh (σt) , t ∈ [a, b] ⊂ R with σ > 0 we have σ-sinh finite

Hilbert transform

(
Tsinh(σ)f

)
(a, b; t)

(7)

:=
σ

π
lim
ε→0+

[∫ t−ε

a

f (τ) cosh (στ)

sinh (στ)− sinh (σt)
d τ +

∫ b

t+ε

f (τ) cosh (στ)

sinh (στ)− sinh (σt)
d τ

]
,

where t ∈ (a, b) .
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Similar transforms can be associated to the following functions as well:

g (t) = tan (ρt) , t ∈ [a, b] ⊂
[
− π

2ρ
,
π

2ρ

]
where ρ > 0,

and
g (t) = tanh (σt) , t ∈ [a, b] ⊂ R with σ > 0.

Motivated by the above results, we establish in this paper some inequal-
ities for the generalized finite Hilbert transform of convex functions on an
interval. Applications for some particular instances of finite Hilbert trans-
forms such as the ones from (2)-(7) are given as well.

2. Main Results

Consider the function 1 (t) = 1, t ∈ (a, b). We need the following prelim-
inary result.

Lemma 1. For a continuous strictly increasing function g : [a, b]→ [g (a) , g (b)]
that is differentiable on (a, b) we have

(8) (Tg1) (a, b; t) =
1

π
ln

(
g (b)− g (t)

g (t)− g (a)

)
, t ∈ (a, b) .

We also have for f : (a, b)→ C that
(9)

(Tgf) (a, b; t) =
1

π
f (t) ln

(
g (b)− g (t)

g (t)− g (a)

)
+

1

π
PV

∫ b

a

f (τ)− f (t)

g (τ)− g (t)
g′ (τ) d τ,

for t ∈ (a, b) , provided that the PV from the right hand side of the equality
(9) exists.

Proof. We have

(Tg1) (a, b; t) =
1

π
lim
ε→0+

[∫ t−ε

a

g′ (τ)

g (τ)− g (t)
d τ +

∫ b

t+ε

g′ (τ)

g (τ)− g (t)
d τ

](10)

=
1

π
lim
ε→0+

[
ln |g (τ)− g (t)||t−εa + ln (g (τ)− g (t))|bt+ε

]
=

1

π
lim
ε→0+

[ln (g (t)− g (t− ε))− ln (g (t)− g (a))

+ ln (g (b)− g (t))− ln (g (t+ ε)− g (t))]

=
1

π
ln

(
g (b)− g (t)

g (t)− g (a)

)
+

1

π
lim
ε→0+

ln

(
g (t)− g (t− ε)
g (t+ ε)− g (t)

)
,

for t ∈ (a, b) .
Since g is differentiable, we have

lim
ε→0+

g (t)− g (t− ε)
g (t+ ε)− g (t)

= lim
ε→0+

g(t)−g(t−ε)
ε

g(t+ε)−g(t)
ε

=
g′ (t)

g′ (t)
= 1,
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for t ∈ (a, b), and by (10) we get (8).
From the definition (1) we deduce

(Tgf) (a, b; t) :=
1

π
PV

∫ b

a

(f (τ)− f (t) + f (t)) g′ (τ)

g (τ)− g (t)
d τ

=
1

π
PV

∫ b

a

(f (τ)− f (t)) g′ (τ) d τ

g (τ)− g (t)
+

1

π
PV

∫ b

a

f (t) g′ (τ) d τ

g (τ)− g (t)

=
1

π
PV

∫ b

a

(f (τ)− f (t)) g′ (τ) d τ

g (τ)− g (t)
+

1

π
f (t)PV

∫ b

a

g′ (τ) d τ

g (τ)− g (t)

=
1

π
f (t) ln

(
g (b)− g (t)

g (t)− g (a)

)
+

1

π
PV

∫ b

a

(f (τ)− f (t)) g′ (τ) d τ

g (τ)− g (t)
,

for t ∈ (a, b), which proves the identity (9). �

If g is a function which maps an interval I of the real line to the real
numbers, and is both continuous and injective then we can define the g-
mean of two numbers a, b ∈ I as

Mg (a, b) := g−1
(
g (a) + g (b)

2

)
.

If I = R and g (t) = t is the identity function, then Mg (a, b) = A (a, b) :=
a+b
2 , the arithmetic mean. If I = (0,∞) and g (t) = ln t, then Mg (a, b) =

G (a, b) :=
√
ab, the geometric mean. If I = (0,∞) and g (t) = 1

t , then
Mg (a, b) = H (a, b) := 2ab

a+b , the harmonic mean. If I = (0,∞) and g (t) =

tp, p 6= 0, then Mg (a, b) = Mp (a, b) :=
(
ap+bp

2

)1/p
, the power mean with

exponent p. Finally, if I = R and g (t) = exp t, then

Mg (a, b) = LME (a, b) := ln

(
exp a+ exp b

2

)
,

the LogMeanExp function.

Theorem 2. Assume that g : [a, b] → [g (a) , g (b)] is a continuous strictly
increasing function that is differentiable on (a, b) , f a function such that
f ◦ g−1 : (g (a) , g (b)) → R is a convex function on (g (a) , g (b)). Then for
t ∈ (a, b) we have

(11)
1

π

[
f (t)− f (a) + [g (b)− g (t)]

f ′+ (t)

g′ (t)

]
≤ (Tgf) (a, b; t)− 1

π
f (t) ln

(
g (b)− g (t)

g (t)− g (a)

)
≤ 1

π

[
f (b)− f (t) + [g (t)− g (a)]

f ′− (t)

g′ (t)

]
.

In particular, we have
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1

π

[
f (Mg (a, b))− f (a) +

g (b)− g (a)

2
·
f ′+ (Mg (a, b))

g′ (Mg (a, b))

]
≤ (Tgf) (a, b;Mg (a, b))

≤ 1

π

[
f (b)− f (Mg (a, b)) +

g (b)− g (a)

2
·
f ′− (Mg (a, b))

g′ (Mg (a, b))

]
.

Proof. For t, τ ∈ (a, b) with t 6= τ we then have

(12)
f (τ)− f (t)

g (τ)− g (t)
=
f ◦ g−1 (g (τ))− f ◦ g−1 (g (t))

g (τ)− g (t)
.

By the convexity of f ◦ g−1 we can state that for all g (a) ≤ c < d ≤ g (b)
we have

(13)
(
f ◦ g−1

)′
− (d) ≥

(
f ◦ g−1

)
(d)−

(
f ◦ g−1

)
(c)

d− c
≥
(
f ◦ g−1

)′
+

(c) .

Since f ◦ g−1 has lateral derivatives for z ∈ (g (a) , g (b)) it follows f
has lateral derivatives in each point of (a, b) and by the chain rule and the
derivative of the inverse function,

(14)
(
f ◦ g−1

)′
± (z) =

(
f ′± ◦ g−1

)
(z)
(
g−1
)′

(z) =

(
f ′± ◦ g−1

)
(z)

(g′ ◦ g−1) (z)
.

Let t ∈ (a, b) and t− a > ε > 0, then by (13)) and (14) we have

f ◦ g−1 (g (τ))− f ◦ g−1 (g (t))

g (τ)− g (t)
=
f ◦ g−1 (g (t))− f ◦ g−1 (g (τ))

g (t)− g (τ)
(15)

≥
(
f ′+ ◦ g−1

)
(g (τ))

(g′ ◦ g−1) (g (τ))
=
f ′+ (τ)

g′ (τ)
,

for τ ∈ (a, t− ε) .
If we integrate the inequality (15) over τ on (a, t− ε), we get by (12) that∫ t−ε

a

f (τ)− f (t)

g (τ)− g (t)
g′ (τ) d τ ≥

∫ t−ε

a

f ′+ (τ)

g′ (τ)
g′ (τ) d τ(16)

=

∫ t−ε

a
f ′+ (τ) d τ = f (t− ε)− f (a) ,

for t ∈ (a, b) and t− a > ε > 0.
Let t ∈ (a, b) and b− t > ε > 0, then

f ◦ g−1 (g (τ))− f ◦ g−1 (g (t))

g (τ)− g (t)
≥
(
f ′+ ◦ g−1

)
(g (t))

(g′ ◦ g−1) (g (t))
=
f ′+ (t)

g′ (t)
,

for τ ∈ (t+ ε, b) .
This implies that∫ b

t+ε

f (τ)− f (t)

g (τ)− g (t)
g′ (τ) d τ ≥

∫ b

t+ε

f ′+ (t)

g′ (t)
g′ (τ) d τ(17)
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=
f ′+ (t)

g′ (t)
[g (b)− g (t+ ε)] ,

for t ∈ (a, b) and b− t > ε > 0.
By adding the inequalities (16) and (17) we get∫ t−ε

a

f (τ)− f (t)

g (τ)− g (t)
g′ (τ) d τ +

∫ b

t+ε

f (τ)− f (t)

g (τ)− g (t)
g′ (τ) d τ(18)

≥ f (t− ε)− f (a) +
f ′+ (t)

g′ (t)
[g (b)− g (t+ ε)] ,

for t ∈ (a, b) and min {b− t, t− a} > ε > 0.
By taking the limit over ε→ 0+ in (18) we get

(19) PV

∫ b

a

f (τ)− f (t)

g (τ)− g (t)
g′ (τ) d τ ≥ f (t)− f (a) +

f ′+ (t)

g′ (t)
[g (b)− g (t)] ,

for t ∈ (a, b).
By using the identity (9) we get the first inequality in (11).
Let t ∈ (a, b) and t− a > ε > 0, then by (13) and (14) we also have

f ◦ g−1 (g (τ))− f ◦ g−1 (g (t))

g (τ)− g (t)
=
f ◦ g−1 (g (t))− f ◦ g−1 (g (τ))

g (t)− g (τ)
(20)

≤
(
f ′− ◦ g−1

)
(g (t))

(g′ ◦ g−1) (g (t))
=
f ′− (t)

g′ (t)
,

for τ ∈ (a, t− ε) .
If we integrate the inequality (20) over τ on (a, t− ε), we get by (12) that∫ t−ε

a

f (τ)− f (t)

g (τ)− g (t)
g′ (τ) d τ ≤

∫ t−ε

a

f ′− (t)

g′ (t)
g′ (τ) d τ(21)

=
f ′− (t)

g′ (t)
[g (t− ε)− g (a)] ,

for t ∈ (a, b) and t− a > ε > 0.
Let t ∈ (a, b) and b− t > ε > 0, then

(22)
f ◦ g−1 (g (τ))− f ◦ g−1 (g (t))

g (τ)− g (t)
≤
(
f ′− ◦ g−1

)
(g (τ))

(g′ ◦ g−1) (g (τ))
=
f ′− (τ)

g′ (τ)
,

for τ ∈ (t+ ε, b) .
If we integrate the inequality (22) over τ on (t+ ε, b), we get

(23)
∫ b

t+ε

f (τ)− f (t)

g (τ)− g (t)
g′ (τ) d τ ≤

∫ b

t+ε

f ′− (τ)

g′ (τ)
g′ (τ) d τ = f (b)− f (t+ ε) ,

for t ∈ (a, b) and b− t > ε > 0.
By adding the inequalities (21) and (23) we get∫ t−ε

a

f (τ)− f (t)

g (τ)− g (t)
g′ (τ) d τ +

∫ b

t+ε

f (τ)− f (t)

g (τ)− g (t)
g′ (τ) d τ(24)
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≤
f ′− (t)

g′ (t)
[g (t− ε)− g (a)] + f (b)− f (t+ ε) ,

for t ∈ (a, b) and min {b− t, t− a} > ε > 0.
By taking the limit over ε→ 0+ in (24) we get

PV

∫ b

a

f (τ)− f (t)

g (τ)− g (t)
g′ (τ) d τ ≤ f (b)− f (t) +

f ′− (t)

g′ (t)
[g (t)− g (a)] ,

for t ∈ (a, b) .
By using the identity (9) we obtain the second inequality in (11). �

Remark 1. With the assumptions of Theorem 2, and if f is differentiable
on (a, b) , then we have

1

π

[
f (t)− f (a) + [g (b)− g (t)]

f ′ (t)

g′ (t)

]
≤ (Tgf) (a, b; t)− 1

π
f (t) ln

(
g (b)− g (t)

g (t)− g (a)

)
≤ 1

π

[
f (b)− f (t) + [g (t)− g (a)]

f ′ (t)

g′ (t)

]
,

for all t ∈ (a, b) .
In particular, we have

1

π

[
f (Mg (a, b))− f (a) +

g (b)− g (a)

2

f ′ (Mg (a, b))

g′ (Mg (a, b))

]
≤ (Tgf) (a, b;Mg (a, b))

≤ 1

π

[
f (b)− f (Mg (a, b)) +

g (b)− g (a)

2

f ′ (Mg (a, b))

g′ (Mg (a, b))

]
.

We also have:

Theorem 3. Assume that g : [a, b] → [g (a) , g (b)] is a continuous strictly
increasing function that is differentiable on (a, b) and g′+ (a) and g− (b) are
finite. If f ◦ g−1 : (g (a) , g (b))→ R is a convex function on (a, b) and f has
finite lateral derivatives f ′+ (a) and f− (b) , then for t ∈ (a, b) we have

f ′+ (a)

πg′+ (a)
[g (b)− g (a)] ≤ f (t)− f (a)

π [g (t)− g (a)]
[g (b)− g (a)](25)

≤ (Tgf) (a, b; t)− 1

π
f (t) ln

(
g (b)− g (t)

g (t)− g (a)

)
≤ f (b)− f (t)

π [g (b)− g (t)]
[g (b)− g (a)]

≤
f ′− (b)

πg′− (b)
[g (b)− g (a)] .



S.S. Dragomir 89

In particular, for t = Mg (a, b) we get
f ′+ (a)

πg′+ (a)
[g (b)− g (a)] ≤ 2

π
[f (Mg (a, b))− f (a)]

≤ (Tgf) (a, b;Mg (a, b))

≤ 2

π
[f (b)− f (Mg (a, b))] ≤

f ′− (b)

πg′− (b)
[g (b)− g (a)] .

Proof. We recall that if Φ : I → R is a continuous convex function on the
interval of real numbers I and α ∈ I then the divided difference function
Φα : I \ {α} → R,

Φα (t) := [α, t; Φ] :=
Φ (t)− Φ (α)

t− α
is monotonic nondecreasing on I \ {α} .

Using this property for the function Φ : (c, d)→ R, we have for t ∈ (c, d)
that

Φ (c)− Φ (t)

c− t
≤ Φ (τ)− Φ (t)

τ − t
≤ Φ (d)− Φ (t)

d− t
,

for any τ ∈ (c, d) , τ 6= t.
By the gradient inequality for the convex function Φ we also have

Φ (t)− Φ (c)

t− c
≥ Φ′+ (c) , for t ∈ (c, d)

and
Φ (d)− Φ (t)

d− t
≤ Φ− (d) , for t ∈ (c, d) .

Therefore we have the following inequality

Φ′+ (c) ≤ Φ (t)− Φ (c)

t− c
≤ Φ (τ)− Φ (t)

τ − t
(26)

≤ Φ (d)− Φ (t)

d− t
≤ Φ− (d) ,

for t, τ ∈ (c, d) and τ 6= t.
If we write the inequality (26) for the convex function Φ = f ◦ g−1 and

the interval (g (a) , g (b)) , we get(
f ′+ ◦ g−1

)
(g (a))(

g′+ ◦ g−1
)

(g (a))
≤
(
f ◦ g−1

)
(g (t))−

(
f ◦ g−1

)
(g (a))

g (t)− g (a)
(27)

≤
(
f ◦ g−1

)
(g (τ))−

(
f ◦ g−1

)
(g (t))

g (τ)− g (t)

≤
(
f ◦ g−1

)
(g (b))−

(
f ◦ g−1

)
(g (t))

g (b)− g (t)

≤
(
f ′− ◦ g−1

)
(g (b))(

g′− ◦ g−1
)

(g (b))
,
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for t, τ ∈ (a, b) and τ 6= t.
This is equivalent to

(28)
f ′+ (a)

g′+ (a)
≤ f (t)− f (a)

g (t)− g (a)
≤ f (τ)− f (t)

g (τ)− g (t)
≤ f (b)− f (t)

g (b)− g (t)
≤
f ′− (b)

g′− (b)
,

for t, τ ∈ (a, b) and τ 6= t.
If we multiply with g′ (τ) ≥ 0 and take the PV in (28), then we get

f ′+ (a)

g′+ (a)

∫ b

a
g′ (τ) d τ ≤ f (t)− f (a)

g (t)− g (a)

∫ b

a
g′ (τ) d τ

≤ PV
∫ b

a

f (τ)− f (t)

g (τ)− g (t)
g′ (τ) d τ

≤
∫ b

a

f (b)− f (t)

g (b)− g (t)
g′ (τ) d τ ≤

f ′− (b)

g′− (b)

∫ b

a
g′ (τ) d τ,

for t ∈ (a, b), which is equivalent to
f ′+ (a)

g′+ (a)
[g (b)− g (a)] ≤ f (t)− f (a)

g (t)− g (a)
[g (b)− g (a)]

≤ PV
∫ b

a

f (τ)− f (t)

g (τ)− g (t)
g′ (τ) d τ

≤ f (b)− f (t)

g (b)− g (t)
[g (b)− g (a)] ≤

f ′− (b)

g′− (b)
[g (b)− g (a)] ,

for t ∈ (a, b) .
By the use of the identity (9) we obtain the desired result (25). �

3. Applications for GA-Convex Functions

Let I ⊂ (0,∞) be an interval; a real-valued function f : I → R is said to
be GA-convex (concave) on I if

(29) f
(
x1−λyλ

)
≤ (≥) (1− λ) f (x) + λf (y) ,

for all x, y ∈ I and λ ∈ [0, 1]. Since the condition (29) can be written as

f ◦ exp ((1− λ) lnx+ λ ln y) ≤ (≥) (1− λ) f ◦ exp (lnx) + λf ◦ exp (ln y) ,

then we observe that f : I → R is GA-convex (concave) on I if and only
if f ◦ exp is convex (concave) on ln I := {ln z, z ∈ I} . If I = [a, b] then
ln I = [ln a, ln b] .

It is known that the function f (x) = ln (1 + x) is GA-convex on (0,∞)
[1].

For real and positive values of x, the Euler gamma function Γ and its
logarithmic derivative ψ, the so-called digamma function, are defined by

Γ (x) :=

∫ ∞
0

tx−1e−t d t and ψ (x) :=
Γ′ (x)

Γ (x)
.
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It has been shown in [21] that the function f : (0,∞)→ R defined by

f (x) = ψ (x) +
1

2x

is GA-concave on (0,∞) while the function g : (0,∞)→ R defined by

g (x) = ψ (x) +
1

2x
+

1

12x2

is GA-convex on (0,∞) .
If [a, b] ⊂ (0,∞) and the function g : [ln a, ln b] → R is convex (concave)

on [ln a, ln b] , then the function f : [a, b] → R, f (t) = g (ln t) is GA-convex
(concave) on [a, b] .

Indeed, if x, y ∈ [a, b] and λ ∈ [0, 1] , then

f
(
x1−λyλ

)
= g

(
ln
(
x1−λyλ

))
= g [(1− λ) lnx+ λ ln y]

≤ (≥) (1− λ) g (lnx) + λg (ln y) = (1− λ) f (x) + λf (y) ,

showing that f is GA-convex (concave) on [a, b] .
Consider the following logarithmic finite Hilbert transform

(Tlnf) (a, b; t) :=
1

π
lim
ε→0+

[∫ t−ε

a

f (τ)

τ ln
(
τ
t

) d τ +

∫ b

t+ε

f (τ)

τ ln
(
τ
t

) d τ

]
,

where t ∈ (a, b) ⊂ (0,∞) .

Proposition 1. Assume that f : [a, b] ⊂ (0,∞)→ R is GA-convex on [a, b] ,
then

1

π

[
f (t)− f (a) + tf ′+ (t) ln

(
b

t

)]
≤ (Tlnf) (a, b; t)− 1

π
f (t) ln

(
ln
(
b
t

)
ln
(
t
a

))

≤ 1

π

[
f (b)− f (t) + tf ′− (t) ln

(
t

a

)]
,

for all t ∈ (a, b) .
In particular,

1

π

[
f (G (a, b))− f (a) +G (a, b) ln

(√
b

a

)
f ′+ (G (a, b))

]
≤ (Tgf) (a, b;G (a, b))

≤ 1

π

[
f (b)− f (G (a, b)) +G (a, b) ln

(√
b

a

)
f ′− (G (a, b))

]
,

where G (a, b) :=
√
ab is the geometric mean of a, b > 0.

The proof follows by Theorem 2 for g (t) = ln t, t ∈ (a, b) .
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Proposition 2. With the assumptions of Proposition 1 and if f ′+ (a) and
f ′− (b) are finite, then

af ′+ (a)

π
ln

(
b

a

)
≤ f (t)− f (a)

π

ln
(
b
a

)
ln
(
t
a

)
≤ (Tlnf) (a, b; t)− 1

π
f (t) ln

(
ln
(
b
t

)
ln
(
t
a

))

≤ f (b)− f (t)

π

ln
(
b
a

)
ln
(
b
t

) ≤ bf ′− (b)

π
ln

(
b

a

)
,

for any t ∈ (a, b) .
In particular,

af ′+ (a)

π
ln

(
b

a

)
≤ 2

π
[f (G (a, b))− f (a)]

≤ (Tlnf) (a, b;G (a, b))

≤ 2

π
[f (b)− f (G (a, b))] ≤

bf ′− (b)

π
ln

(
b

a

)
.

The proof follows by Theorem 3 for g (t) = ln t, t ∈ (a, b) .

4. Application for LogExp Convex Function

We say that the function f : [a, b] → R is a LogExp convex function on
[a, b] if f ◦ ln is convex on the interval [exp a, exp b] , namely

(f ◦ ln) ((1− λ)u+ λv) ≤ (1− λ) (f ◦ ln) (u) + λ (f ◦ ln) (v) ,

for any λ ∈ [0, 1] and u, v ∈ [exp a, exp b] .
By taking u = exp t, v = exp s, t, s ∈ [a, b] , this is equivalent to

f [ln ((1− λ) exp t+ λ exp s)] ≤ (1− λ) f (t) + λf (s) ,

for any λ ∈ [0, 1] and t, s ∈ [a, b] .
For g (t) = exp (t) , t ∈ [a, b] ⊂ R we have the exponential finite Hilbert

transform

(Texpf) (a, b; t)

:=
1

π
lim
ε→0+

[∫ t−ε

a

f (τ) exp (τ)

exp (τ)− exp (t)
d τ +

∫ b

t+ε

f (τ) exp (τ)

exp (τ)− exp (t)
d τ

]
=

1

π
lim
ε→0+

[∫ t−ε

a

f (τ)

1− exp (t− τ)
d τ +

∫ b

t+ε

f (τ)

1− exp (t− τ)
d τ

]
,

where t ∈ (a, b) .
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Proposition 3. Assume that f : [a, b] → R is LogExp convex function on
[a, b] , then

1

π

[
f (t)− f (a) + [exp (b− t)− 1] f ′+ (t)

]
≤ (Texpf) (a, b; t)− 1

π
f (t) ln

(
exp (b− t)− 1

1− exp (a− t)

)
≤ 1

π

[
f (b)− f (t) + [1− exp (a− t)] f ′− (t)

]
,

for any t ∈ (a, b) .
In particular,

1

π

[
f (LME (a, b))− f (a) +

exp (b)− exp (a)

exp (b) + exp (a)
f ′+ (LME (a, b))

]
≤ (Tgf) (a, b;LME (a, b))

≤ 1

π

[
f (b)− f (LME (a, b)) +

exp (b)− exp (a)

exp (b) + exp (a)
f ′− (LME (a, b))

]
,

where LME (a, b) = ln
(
exp a+exp b

2

)
is the the LogMeanExp function of a, b.

The proof follows by Theorem 2 for g (t) = exp t, t ∈ (a, b) .

Proposition 4. With the assumptions of Proposition 3 and if f ′+ (a) and
f ′− (b) are finite, then

f ′+ (a)

π
[exp (b− a)− 1] ≤ f (t)− f (a)

π

[
exp (b− a)− 1

exp (t− a)− 1

]
≤ (Texpf) (a, b; t)− 1

π
f (t) ln

(
exp (b− t)− 1

1− exp (a− t)

)
≤ f (b)− f (t)

π

[
1− g (a− b)
1− g (t− b)

]
≤
f ′− (b)

π
[1− exp (a− b)] ,

for t ∈ (a, b) .
In particular,

f ′+ (a)

π
[exp (b− a)− 1] ≤ 2

π
[f (LME (a, b))− f (a)]

≤ (Texpf) (a, b;LME (a, b))

≤ 2

π
[f (b)− f (LME (a, b))]

≤
f ′− (b)

π
[1− exp (a− b)] .

The proof follows by Theorem 3 for g (t) = exp t, t ∈ (a, b) .
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5. Application for Positive p-Convex Function

Let p > 0. We say that the function f : [a, b] ⊂ [0,∞) → R is a positive
p-convex function on [a, b] if f ◦ (·)1/p is convex on the interval [ap, bp] ,
namely

f
[
((1− λ)u+ λv)1/p

]
≤ (1− λ) f

(
u1/p

)
+ λf

(
v1/p

)
,

for any λ ∈ [0, 1] and u, v ∈ [ap, bp] .
By taking u = tp, v = sp, t, s ∈ [a, b] , this is equivalent to, see also [22]

f
[
((1− λ) tp + λsp)1/p

]
≤ (1− λ) f (t) + λf (s) ,

for any λ ∈ [0, 1] and t, s ∈ [a, b] .
For [a, b] ⊂ (0,∞) and g (t) = tp, t ∈ [a, b] , p > 0, we consider the positive

p-power Hilbert transform

(Tpf) (a, b; t) :=
p

π
lim
ε→0+

[∫ t−ε

a

f (τ) τp−1

τp − tp
d τ +

∫ b

t+ε

f (τ) τp−1

τp − tp
d τ

]
,

where t ∈ (a, b) .

Proposition 5. Assume that f : [a, b]→ R is positive p-convex function on
[a, b] , then

1

π

[
f (t)− f (a) +

bp − tp

ptp−1
f ′+ (t)

]
≤ (Tpf) (a, b; t)− 1

π
f (t) ln

(
bp − tp

tp − ap

)
≤ 1

π

[
f (b)− f (t) +

tp − ap

ptp−1
f ′− (t)

]
,

for t ∈ (a, b) .
In particular, we have

1

π

[
f (Mp (a, b))− f (a) +

bp − ap

2pMp−1
p (a, b)

f ′+ (Mp (a, b))

]
≤ (Tgf) (a, b;Mp (a, b))

≤ 1

π

[
f (b)− f (Mp (a, b)) +

bp − ap

2pMp−1
p (a, b)

f ′− (Mp (a, b))

]
,

where Mp (a, b) :=
(
ap+bp

2

)1/p
.

The proof follows by Theorem 2 for g (t) = tp, t ∈ [a, b] .
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Proposition 6. With the assumptions of Proposition 5 and if f ′+ (a) and
f ′− (b) are finite, then

bp − ap

pπap−1
f ′+ (a) ≤ f (t)− f (a)

π

(
bp − ap

tp − ap

)
≤ (Tpf) (a, b; t)− 1

π
f (t) ln

(
bp − tp

tp − ap

)
≤ f (b)− f (t)

π

(
bp − ap

bp − tp

)
≤ bp − ap

pπap−1
f ′− (b) .

In particular,
bp − ap

pπap−1
f ′+ (a) ≤ 2

π
[f (Mp (a, b))− f (a)]

≤ (Tpf) (a, b;Mp (a, b))

≤ 2

π
[f (b)− f (Mp (a, b))] ≤ bp − ap

pπap−1
f ′− (b) .

The proof follows by Theorem 3 for g (t) = tp, t ∈ (a, b) .
Similar results may be stated for negative p-power convex functions, namely

for g (t) = − 1
tp , t ∈ [a, b] ⊂ (0,∞) . The details are omitted.
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